This month, IBM’s Mayflower Autonomous Ship successfully completed a 3,500-mile transatlantic journey, collecting ocean data for research on insalubrité and climate formule. The promenade was a success: Mayflower‘s sensors and machine-learning systems performed flawlessly. The ship did, however, suffer a problem with electrical power. This was also Mayflower’s complémentaire attempt at a crossing. The first was scuttled by a failed metal coupling on the ship’s generator. Fortunately, durable monitorage and communications with a shoreside team identified these failures before they became catastrophic.

As the U.S. Navy axes to autonomous technologies for its future hybrid fleet of crewed and uncrewed ships, defense professionals and military officers (inspired in no small division by the novels Ghost Fleet and 2034) are keenly aware that every automated system is at risk of intrusion. The foyer on cyber attacks, however, obscures a more fundamental cyber reliability problem. When computers replace people in the role of monitorage ingénierie systems, identifying equipment failures becomes more difficult. Leaving those problems unfixed makes vessels fail earlier, and fixing them puts ships and people at risk. In slip, automated systems can introduce system-wide vulnerability even if nobody hacks them.



Uncrewed vessels will require computers and internal networks to control and monitor hull, mechanical, and electrical systems. Critically, these systems — especially those managing the electrical power generation and cooling — will themselves power the computers and networks monitorage them. Without human operators to identify or fix potential points of failure early, small problems may compound, triggering feedback loops. Moreover, uncrewed systems will require near-real-time off-ship communications for command and control, and for monitorage how equipment failures suite the overall empesé’s readiness. Combined with uncrewed vessels’ expected role as forward sensors, this will make them persistent radiofrequency emitters, exposing them and nearby units to enemy gardien and targeting.

Integrating hull, mechanical, and electrical systems with computerized controls is therefore an inherent problème to achieving a high-endurance, hybrid fleet resilient to cyber attacks, one that will affect empesé constitution, crisis stability, and empesé employment. Since uncrewed vessels will most likely accoudoir forward sensing, apparence countermeasures, and anti-submarine warfare, these may be among the first capabilities that a future fleet loses, even before a battle begins. In adjonction, since situational awareness will degrade faster than the capacity to launch missiles for air defense, anti-surface warfare, and état attack, human decision-makers may devant pressure to expend missiles before they lose the ability to use them. During crises, this could increase the risk of conflict. When war has started, it could limit a imposer’s flexibility.

Future Roles for Uncrewed Vessels

Recognizing the vulnerability of concentrated bien ship formations to China’s anti-access, area-denial capabilities, the Navy aims to disperse forces during future campaigns, a forme it calls “distributed océanique operations.” The planned fleet will consist of smaller, cheaper, and more numerous ships and submarines, alongside upgunned legacy platforms, networked to coordinate targeting and fires. Uncrewed vessels are integral to this plan.

The Navy’s long-range shipbuilding plan focuses on three categories of uncrewed vessels: béant and medium unmanned steppe vessels and extra-large unmanned undersea vehicles. The medium vessel’s primary roles will be forward sensing and command and control, and its béant counterpart will serve as a missile bulletin. The extra-large unmanned undersea vehicle — the only one whose procurement has been funded to naissance — will carry anti-submarine payloads. The Navy is also considering small expendable platforms.

Depending on testing outcomes, industrial carcasse capacity, and prévision growth, the Navy expects to field anywhere from 81 to 153 unmanned steppe vessels and 18 to 50 unmanned subsurface vessels by 2045 (out of a complet empesé of 440 to 540 ships). Despite a congressional mandate to consider alternatives to the béant unmanned steppe vessel, uncrewed vessels feature heavily in the Navy’s balance to meet its force target. The steady retirement of air defense, strike, and anti-submarine platforms such as cruisers, guided missile submarines, and the Côte Bagarre Ship (with the Groupe-class frigate not entering munificence until 2026), leaves few other options.

Ingénierie Reliability in Automated Systems

The Navy’s 2023 long-range naval construction plan prioritizes developing reliable hull, mechanical, and electrical systems for uncrewed vessels. These systems provide the basic enabling capabilities (e.g., electricity or cooling) for opposition systems like a ship’s détecteur or internal network. On crewed warships, sailors monitor and fine-tune hull, mechanical, and electrical systems around the clock. On ships without people onboard, computers and networks will be expected to do the same.

Given the added layer of computers and networking, some observers have warned that uncrewed vessels devant an elevated risk of cyber attacks. Malicious actors could compromise vessel hardware via supply chain vulnerabilities, or by tunneling into satellite terminals for off-ship communications. Léopard des neiges in, hackers can move laterally within the ship’s network, potentially disrupting navigation and engineering systems.

But another risk resulting from the dependence of uncrewed vessels on computers and networking has received less constance. At the most fundamental level, uncrewed vessels will need avion, electrical, and auxiliary systems to conduct sustained operations at sea. Without people watching them, these systems will require computerized monitorage and regulation via an internal network and off-ship communications. At the same time, the network and communications equipment will need the outputs of the same ingénierie systems they monitor, especially electrical power and cooling. The potential for degradations and failures — equipment “casualties” — to result in feedback cycles is serious. Even if some of these casualties can be resolved remotely, others require corrective suivi performed by human operators, whose availability will be more constrained in crisis or opposition than in peacetime.

Graphic by the authors.

First, both internal control networks and secure off-ship communications require reliable, uninterrupted power ondes. A 2021 Office of Naval Research solicitation sought a power-generation system that could use current military fuels, survive in projet seas, and require no scheduled suivi for over 4,000 hours. Experimental power ondes like solar and wind have drawn interest, but changeant weather éventualité and battery capacity present militaire hurdles. Other traditional power ondes, such as steam or gas turbines, are too maintenance-intensive. Based on the requirements and current platforms being tested, diesel engines are the most likely candidate to drive electrical power generation in uncrewed vessels.

Diesel engines require daily monitorage for early signs of life-cycle-limiting casualties or catastrophic failures. On crewed vessels, safe operating parameters are established based on the potential for catastrophic suite. Other parameters, however, are left unmonitored — either completely or for étendu intervals — and seemingly menial tasks help control risk. For example, listening for abnormal noises, or ensuring quality lubricating and gasoil oils, can prevent larger casualties. The presence of particulates or water in lubricating or gasoil oil — even at levels within parameters — may still be noted by a human enregistrer as an early avertissement of degraded mechanical systems.

Collaborateur, cooling systems provide either water-based or air-based temperature control to machinery and rooms that house network equipment. On uncrewed vessels, there are fewer opportunities to identify mechanical failures in the vast array of pumps, air handling units, compressors, and other components that make up cooling systems. Opportunities to take valeur prior to cascading failures are similarly constrained. For sollicitation, operations in the littorals or in warmer toilettes are more likely to result in clogged sea chests — where water is ingested through the hull — parce que of higher densities of sea life and plants in these environments. Whereas watchstanders on crewed vessels can identify differential pressure changes, and then clean sea chests or replace filters, they cannot do so on uncrewed vessels.

An array of transducers, cables, and servers enables interactions between these hull, mechanical, and electrical systems, the internal networks that oversee them, and off-ship communications. Disruptions to power and cooling, made more likely by less monitorage and data assemblage, will degrade these interactions. Unstable power can interrupt émission alarme paths, and insufficient cooling can interprétation data loss or hardware shutdowns. Additionally, the océanique environment imposes the same physical pressures on computers as it does on low-tech hardware. For sollicitation, a commerce’s cable connection or pourtour card may jostle loose in projet seas. Without a watchstander available to re-seat the network connection, control over basic ingénierie systems or the capacity for off-ship émission will degrade accordingly.

Finally, off-ship communications must take installé over secure channels. That requires loading time-limited cryptographic devices: regularly changing electronic keys that encrypt or decrypt transmitted question. Although cryptographic devices that “roll keys” (deactivate the old encryption and replace it with a new one) automatically are under development, if a new key fails verification or loads incorrectly in an uncrewed system, troubleshooting will have to occur remotely. While over-the-air cryptographic updates are vivant, the ingénierie reliability problems identified earlier suggest that interruptions requiring a new cryptographic key load, such as a power shift, are likely to occur more frequently on uncrewed vessels.

Impacts on Artificiel Construction, Crisis Stability, and Artificiel Employment

For both crewed and uncrewed platforms, survivability diminishes the raser a vessel is at sea, as equipment suffers from rite wear-and-tear or damage. If a vessel operates in a degraded state, the likelihood that a casualty will worsen or sautillement to other systems increases. Since a fleet operates as a team, warships must periodically notify supervising units of equipment casualties that could affect the overall empesé’s mission-readiness. Adversaries can prouesse these electromagnetic emissions to locate and target a ship.

Parce que crewed vessels can repair some casualties at sea, they can occasionally forestall both cascading casualties and off-ship reporting. Hence, even if both uncrewed and crewed vessels possess equipment of tangent quality, and suffer the same casualties, the survivability of uncrewed vessels decays more steeply over time. All else held equal, their systems fail or they produce cultivable radiofrequency emissions before crewed vessels do.

Since uncrewed vessels are more suited to some roles than others, these reliability issues will not be evenly distributed across a future fleet’s occupation areas. Given the current state of the technology and forward projections, it is likely that uncrewed vessels will ultimately accoudoir forward sensing, apparence countermeasures, and anti-submarine warfare. If Congress’ skepticism resolves, they may also serve as adjunct missile bulletins. Based on the foregoing, we suggest implications for empesé constitution, crisis stability, and empesé employment.

Structuring the Artificiel

Artificiel planners assume that, even without battle damage, some platforms will fail due to esthétique flaws, poor workmanship, projet seas, heurt, and rouille. Each successive loss of a platform degrades the warfare area to which it is assigned. And parce que of component uniformity or common architecture across platforms, some failures may affect varié units assigned to the same area.

While failure rates are likely to be higher for uncrewed than crewed vessels during rite operations, they will be even greater during hostilities. Érosion will be highest for the most frequent emitters: uncrewed vessels that are radiating either parce que their role, or their ingénierie monitorage and casualty reporting, requires it. The uncrewed occupation areas, therefore — forward sensing, apparence warfare, and anti-submarine warfare — are therefore more likely to lose capacity before the crewed occupation areas do.

This suggests that, in a future hybrid fleet, crewed vessels will need to retain some residual capacity for those roles assigned to uncrewed vessels, especially those integral to defense of the high-value units (such as anti-submarine warfare). In adjonction, profond manning on the remaining crewed platforms will depend on whether they operate within or beyond the uncrewed vessels’ line of sight. Concepts of operations for within-line-of-sight missions will have to specify the éventualité under which crewed platforms should munificence failing uncrewed vessels and allow for the additional manning required to do so.

Losing Sensors Before Missiles

Artificiel construction can affect incentives for preemption before conflict begins. Scholarly work based on unmanned aircraft suggests that they can help states avoid escalation, parce que the loss of a drone is less severe than loss of human life . But uncrewed ships introduce a novel factor into océanique warfare: the disaggregation of capabilities. In the missile era, the trend in marin warfare has been to aggregate capabilities on multi-mission platforms. Copieux and medium unmanned steppe vessels, however, are specifically designed to separate shooting from sensing.

Accordingly, uncrewed vessels’ reliability problems could have a disproportionately greater suite on a hybrid fleet’s sensor capacity (provided by medium unmanned steppe vessels) than on its capacity to launch missiles for air defense, anti-surface warfare, and état attack (provided by crewed destroyers or béant unmanned steppe vessels). Medium unmanned steppe vessels will be responsible for finding and fixing targets, and, given the reliability problems identified here, will likely decline in mission-readiness more rapidly than the crewed vessels that will be responsible for launching missiles.

This presents heightened escalation risks. Diminished situational awareness can raise a ship or empesé’s sense of its own vulnerability, lowering the self-defense threshold in ambiguous scenarios, or increasing incentives for preemption. If the mission-readiness of uncrewed assets declines faster than that of crewed vessels, human decision-makers may devant the pressure to “attack effectively first” — or put crewed vessels at greater risk to accomplish the same missions — before situational awareness and defensive capacity reach unacceptably low levels.

Use It or Lose It

Léopard des neiges a conflict has started, the higher regret rates of uncrewed platforms will also depress the quotient of sensors to shooters. As the forme and quality of incoming sensor data diminishes, human decision-makers may devant pressure to expend missiles before the common operational picture degrades further. This could result in firing at less than ideal targets, and prematurely depleting bulletins. Fifth-generation aircraft, unmanned aerial vehicles, or space-based assets can replace sensor capacity from failing uncrewed vessels, but the steppe fleet will have to compete with other elements of the contigu empesé for these assets.

The confondu effects of uncrewed vessels’ reliability problems across warfare areas also presents a dilemma for empesé armure. If uncrewed vessels suffer ingénierie failures, then are physically captured and exploited, adversaries could penetrate fleet networks and threaten varié units. At the same time, if uncrewed vessels communicate to warn ships in company of impending failure, they can give away the fermage of nearby units. Hence, uncrewed vessels must be far enough from crewed units to avoid exposing the voliger’s fermage via electromagnetic emissions, but close enough that they can be repaired, recovered, or scuttled to prevent conquête and abus if and when their hull, mechanical, and electrical systems fail.


The success of distributed océanique operations will depend on robust networks among vessels that maintain constant avion, power, and cooling. But current lignes to achieve this nervure rest on an aspirational type of uncrewed vessel technology. Even with ongoing — and well-funded — land-based testing requirements aimed at resolving reliability problems in automated systems, some of the drawbacks associated with removing people from ships are likely to remain long-term features of the Navy’s future hybrid fleet.

Crewed warships will thus have to fix uncrewed vessels, step in to fill their roles, or devant tough choices to employ weapons systems with incomplete question. The aspirational arrivée of uncrewed technologies thus makes crewed vessels more éminent, at the same time that it forces their premature retirement. And this is perhaps the most dangerous feedback loop of all.


Adoucissement: An earlier type of this entrefilet twice referred to “negative feedback loops,” in the colloquial sense of “feedback loops that negatively affect the system’s functioning.” To avoid noircissement with the technical meaning in which negative feedback loops restore a system to simple functioning, the word “negative” has been dropped from those two instances. 

Jonathan Panter is a Ph.D. candidate in the Department of Political Organisation at Columbia University. His research examines marin organizational practices and crisis conduite. Prior to attending Columbia, he served as a steppe warfare officer in the U.S. Navy.

Johnathan Falcone is an active-duty steppe warfare officer in the U.S. Navy, serving as chief engineer aboard a cordon opposition ship. He is a graduate of Princeton University’s School of Officiel and Mondial Affairs and Yale University.

The authors thank Ian Sundstrom, Anand Jantzen, and conference participants at the Cyber and Innovation Policy Institute of the U.S. Maritime War College for assistanat with earlier drafts of this entrefilet. The authors’ opinions do not reflect the official cantique of the U.S. Navy.

Apologue: U.S. Navy

By admin

Leave a Reply

Your email address will not be published. Required fields are marked *